
thalestct.com

Roots of Trust
Five Things You Must Know

White Paper



The term Root of Trust (RoT) is commonly used in information security 
circles, but what does it mean? Why do we care?  How does it 
apply to cryptographic controls? Modern computer systems are 
incredibly powerful and flexible. They can be molded to accomplish 
things that were unimaginable a mere decade ago. This same 
property makes them almost impossible to control and all too 
easy for malicious actors to find ways to disrupt them. To counter 
these threats, security experts have resorted to a wide range of 
cryptographic tools, and for these tools to function they need a trust 
worthy beginning.

Why do we need a root of trust?
Cryptography is a powerful defense against all kinds of threats 
as it creates impenetrable walls around our digital assets. It keeps 
information from prying eyes; prevents unauthorized changes to 
it and attests to its authenticity. However, cryptography can only 
achieve this when it is deployed correctly. To achieve this, three 
critical factors must be met: 

Use qualified hard mathematical 
problems
Keep the cryptographic keys secret 
with best-practices key management
Ensure the implementation is trust 
worthy. 

Like a three-legged stool, a failure 
in any one of these foundational 
elements potentially leads to catastrophic failure of the system’s 
security controls.
 
Identifying the hard mathematical problems is the job of 
cryptographers with support from standards organizations such 
as the National Institute of Standards and Technology (NIST). 
Cryptographic algorithms change over time, but there are well 
established processes in place to evaluate new algorithms 
and clearly define which ones are trustworthy. Solving the key 
management and implementation challenges are a little more 
difficult. It is all too easy to lose control of a key if you haven’t 
carefully deployed strong controls.

There are many examples of industry failing on these counts; some 
great examples are Poodle, Heartbleed and 
Spectre/Meltdown. The Poodle attack is a popular 
example of implementation errors. The core, hard 
math problems represented by RSA, ECC and 
AES were not challenged, but the way they were 
deployed at the protocol level failed. Well before 

identifying the specific flaw uncovered by Poodle, researchers 
recognized that SSL 3.0 had weaknesses, so they addressed 
them by introducing Transport Layer Security (TLS). Support for 
TLS rolled out across web servers and browsers, but to maximize 
interoperability, implementers chose to leave SSL 3.0 active much 
longer than necessary. Since the Poodle flaw only existed in SSL 
3.0, the vulnerability uncovered by Poodle could have been 
removed from systems before it had even been discovered. Poodle 

actually illustrates two implementation flaws: unforeseen ways to 
bypass protocol implementations and the unforeseen consequences 
of deployment decisions that make compromises with security best 
practices.

Another example of combined implementation and key 
management failures can be found in the highly publicized 
Heartbleed and Spectre/Meltdown vulnerabilities. Both represent 
flaws that allow remote attackers to steal keys or data from any 
server that can be reached. Heartbleed can be used to extract keys 
and data held in the web server’s application memory. Spectre/
Meltdown can be used to extract keys and data from any memory 
on the server: the web server application, the operating system, other 
virtual machines on the same system, and even code trying to protect 
itself using Intel’s advanced Software Guard Extensions (SGX). Of 
course, keys need to be on the server for them to be stolen, so the 
key management mistake in these examples is choosing to allow 
keys to be used on the server – a device with so much complexity 
that fully locking down the implementation is a daunting task. 

The existence of Heartbleed brought into question every TLS private 
key on every server that used OpenSSL. Spectre/Meltdown were 
similar in nature, but broader in scope bringing into question every 
key on every server using the flawed hardware. That is, not just the 
TLS key for the web server, but any private or symmetric key that was 
on the physical server for any purpose.

Similar flaws do not affect just the confidentiality of your 
cryptographic keys, they also represent a serious risk to your server’s 
integrity. Through them, malware and rootkits can be installed that 
compromise your system on an ongoing basis. Malware can enter 
your server through any crack in its access controls – Heartbleed, 
Spectre/Meltdown are just the tip of the iceberg. Once on your 
server, ebooting or even reinstalling everything will often not clear it. 
This can result in an ongoing compromise of all keys that get loaded 
on the server.  The only way to combat this kind of malware is to use 
a secure boot process that starts from a root of trust. 

What is a root of trust typically used for? 
On a typical computer, a secure boot creates a Root 
of Trust (RoT) by leveraging a physically integrated 
key store and initial boot code. Typically, a Trusted 
Platform Module (TPM) stores critical keys, and the 
initial code is physically integrated into the computer’s 

motherboard. In mobile phones and advanced IoT devices, the RoT 
is boot code and keys fused directly in the specialized chips used 
in the device. In all cases, the primary characteristic of the RoT is that 
it is physically unchangeable with highly restricted interfaces. These 
properties achieve trustworthiness by preventing any change to its 
behavior and using highly restricted interfaces to ensure there are 
no unforeseen ways to misuse the RoT. However, computers, mobile 
devices, and IoT are highly cost sensitive and require operational 
models that are transparent to their user base. This puts constraints on 
these standard RoTs. 

Cryptography

H
ar

d 
M

at
h 

Pr
ob

le
m

K
ey

 M
an

ag
em

en
t

Im
plem

entation



The cost pressures lead to limiting the RoT performance and 
complexity. This causes the RoT to focus on the trustworthy beginning. 
Once the system is up and running, the RoT releases keys to the 
system so performance requirements can be achieved. This exposes 
some RoT-protected keys to vulnerabilities like Heartbleed and 
Spectre/Meltdown.

The users of computers, mobile devices and IoT devices also have 
limited to no training on security practices. This leads the RoT to 
relying on limited well-defined management roles that are largely 
transparent to the users. This is a great attribute for these types of 
devices but restricts the ability to bind RoT authorizations to trusted 
individuals within an organization. 

The core features allow the standard RoT to accomplish critical 
security functions for their systems: ensuring the system integrity by 
detecting the presence of even the most sophisticated malware 
during boot. However, since cryptographic keys must be 
protected always, even when in use, a standard RoT is not enough. 
Cryptographic keys require a cryptographic RoT.  One that is up 
to the challenge of protecting keys through their entire life cycle; 
and one that mitigates against the likes of Heartbleed, Spectre/
Meltdown and more.

How does a cryptographic root of trust 
work?
It is generally known that public key infrastructures (PKI) create 
a web of trust. At the root of every PKI is a Certificate Authority 
(CA) that ultimately attests to the authenticity of every party’s keys. 
The CA is the inherently trusted RoT at the foundation of every PKI. 
Without it, parties could not efficiently authenticate any other party 
it communicates with. If a CA’s private key is lost or misused, the 
integrity of the entire system built on the PKI is lost. It is critical to 
protect the CA’s private key.

The CA is just the root of the trust tree; as you 
extend out across the system there are many other 
critical points where the loss of a key compromises 
substantial parts of a system.  For example, loss of 

a TLS private key enables attackers to impersonate a system’s web 
presence for the life of the lost certificate – often meaning years! 
Sure, certificates can be revoked in theory, but revocation checking 
is far from a guaranteed failsafe. Lose a document signing key 
and the authenticity of every signed document, past, present, and 
future, is now in question. Revoking credential issuance keys leads 
to massively expensive re-provisioning of user tokens or devices, 
and when used to issue IoT device identities, revocation may require 
dispatching maintenance staff to every end-point. Losing any of 
these keys can be catastrophic.

For all these use cases, a high assurance cryptographic module is 
required to protect the keys. It is easy to jump to the conclusion that 
a software based cryptographic module is good enough, after all 
the server has many layers of access controls. However, it should 

now be clear that this conclusion is wrong. Even a TPM-protected 
software module does not protect keys from real world threats like 
Heartbleed, and Spectre/Meltdown. As the potential impact of 
a key compromise increases, a stronger mechanism is needed to 
protect keys against many real-world threats. 

Where does a hardware security module 
fit in all this?
Hardware Security Modules (HSMs) take over when software, and 
even TPM-protected software, fall short. HSMs are high-assurance 
cryptographic modules that easily mitigate against attacks like 
Heartbleed, Spectre/Meltdown. They do this by leveraging and 
extending standard RoT principles – by further anchoring keys in the 
physical world. 

Most obviously, the HSM keeps keys physically separate from the 
server by storing and using them inside the HSM security boundary. 
No matter where malware looks on a server, it will not find the key. 
Using the key within the HSM is the only way to mitigate against 
vulnerabilities that allow an attacker to gain access to the server’s 
memory. It is also important to store keys within the HSM. Storing 
them externally allows attackers to bypass the HSM’s physical 
protections and relies on the key encryption 
implementation as the single layer of defense. 

HSMs also provide highly restricted server 
interfaces that allow keys to be used only 
within a strictly defined set of policies. This prevents unauthorized 
parties from using the keys and prevents even authorized users from 
using keys in potentially insecure ways. Like standard RoT devices, 
an HSM maintains its implementation integrity by always booting 
from trusted code and verifying its firmware just like a server’s secure 
boot. This ensures the HSM always enforces its policies and access 
controls. There is no way for an attacker to change the HSM’s 
behavior. 

An HSM’s strong physical barriers prevent physical tampering 
and probing, and its logical access controls keep out malicious 
insiders. Finally, if the HSM is good at its job, it clearly defines a 
key’s locality. That is, when all copies of a key are strongly tied to a 
physical device it is easy to demonstrate control to auditors. More 
than a checkbox, the FIPS 140-2 Level 3 validation process ensures 
the implementation is correct – something all too commonly not 
achieved by lesser commercial solutions. All this allows an HSM to 
anchor critical keys in the physical world, realizing a cryptographic 
RoT.

This makes an HSM the mandatory element of many keys within 
cryptographic systems. Whether it is protecting the elements of a 
Certificate Authority, TLS server private keys, document signing keys, 
or human or device identity issuance keys. If the impact of a key loss 
goes beyond a single entity, the key should probably be protected 
by the physical controls offered by HSMs. 



What to look for in an HSM?
Selecting an HSM can be a daunting task. There are many choices 
on the market, all making similar security claims but having very 
different operational characteristics. How do you choose?  The 
task becomes easy once you realize a core goal of the HSM is to 
implement a cryptographic RoT for your system. Just determine which 
HSM does the best job rooting itself in the physical world and you 
will have found the best HSM. 

Keys-in-Hardware

When an HSM relies on external storage it exposes keys to many 
threats. Even when stored keys are encrypted, they have lost several 
of the physical barriers that an HSM should provide. Storing keys 
within the HSM clearly defines their locality, and this ensures all the 
physical access control’s – safes, guards, secure data centers, and 
the HSM’s own physical security measures – actually protect all 
copies of your key all the time. If your HSM uses external storage 
mechanisms who knows how many copies of the backup file have 
been made! Padding Oracle vulnerabilities like Poodle – a flaw in 
the way encryption is implemented - should make it clear a single 
layer of protection is inadequate for your high-value keys. 

Fixed Key Management Policies

An HSM should implement critical key management policies directly 
in the hardware in a physically unchangeable manner. Of course, 
administrators need the ability to tailor the HSM to each application. 
However, certain critical policies should not be left to applications, 
or be put at risk to malicious insiders. For example, when using an 
HSM for keys that need to stay put, use an HSM that has no key 
export capability. Making this a physically unchangeable policy 
within the hardware anchors the policy in the physical world. 

Strong Role Separation

Administration roles implemented by an HSM should enable 
separation of duties that map well to the HSM’s operational realities. 
A single super-user style administrator is certainly convenient, but it 
also forces the role to be shared with too many individuals. Instead, 
the roles should separate service activation, policy management 
activities, and HSM domain authorization. Isolating the role of 
domain authorization, the act of authorizing a new HSM to store 
and use specific keys, enables tight control of key locality. That is, 
simply lock this role up in a safe and bring it out only when new 
devices need to be added to the pool of authorized HSMs. When 
the role that puts an HSM into service also authorizes new devices 
to hold the keys, a single point of failure is created and placed in the 
hands of junior infrastructure staff.

Trustworthy Supply Chain
Your HSM supply chain is another critical factor in the physical 
security of your HSM.  Most HSMs are developed on foreign soil 
and are thus subject to influence by foreign actors whose interests 
may not be aligned with the US government and its citizens. Ensure 
you HSM is designed and manufactured by a U.S. based provider 
of high-assurance data security products. 

What are you waiting for?
So now you understand RoT technology and why HSMs have 
become an industry best practice by realizing cryptographic RoT 
for information systems. They’re not just about satisfying the mandate 
to use FIPS 140-2 validated products. HSMs are a fundamental 
part of what makes your security controls effective. If you don’t 
have HSMs deployed for every high-value key in your information 
system, there may be an exposure that could have substantial impact 
to your system’s integrity. And if you have HSMs deployed, but 
their architecture doesn’t follow key RoT principles, then you should 
be wondering if you really got the benefit HSMs are intended to 
deliver.

About Thales Trusted Cyber Technologies
Thales Trusted Cyber Technologies, a business area of Thales Defense 
& Security, Inc., protects the most vital data from the core to the cloud 
to the field. We serve as a trusted, U.S. based source for cyber security 
solutions for the U.S. Federal Government. Our solutions enable 
agencies to deploy a holistic data protection ecosystem where data 
and cryptographic keys are secured and managed, and access and 
distribution are controlled.

Contact Us: For more information, visit www.thalestct.com

3465 Box Hill Corporate Center Drive, Suite D, Abingdon, MD 21009  •443-484-7070 •info@thalestct.com
thalestct.com  ©

20
19

 S
af

eN
et

 A
ss

ur
ed

 Te
ch

no
lo

gi
es

, L
LC

. 1
1.

21
.19


